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ABSTRACT

Computer simulation results are pres: on the performance of convolu-
tional codes of constraint lengths 7 and 10 concatenated with the (255, 223)
Reed-Solomon code (a proposed NASA standard). These results indicate that as

much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a

(10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by

the DSN. A mathematical model of Viterbi decoder burst—error statistics is

developed and is validated through additional computer simulations.
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SECTION I
INTRODUCTION

The purpose of this repcrt is to present new results on the combined per-
formance of short constraint length Viterbi~decoded convolutional codes and
Reed-Solomon codes. When one coding scheme is superimposed upon another, the
resulting combination is called a concatenated code. Those interested in
learning about these coding schemes can find elementary presentations in
Reference 1-1. Our interest is in their performance.

The DSN currently has both (7, 1/2) and (7, 1/3) Viterbi decoders. The
performance of several convolutional codes of rates 1/2 and 1/3 with con-
straint lengths between 7 and 10 have been known for some time (References 1-2
and 1-3). At the time that the DSN Viterbi decoders were buil:, hardware
speeds were not fast enough to build Viterbi decoders of constraint lengths
beyond 7 that were sufficiently reliable and inexpensive. However, with
current and expected technological advancements in mind, we have given another
look at the possible performance of Viterbi decoders of constraint length 10
and rates 1/2 and 1/3.

This report not only extends previous Viterbi performance results, but
also contains new performance results for convolutional codes concatenated
with a (255, 223) Reed-Solomon code. (The performance of the DSN (7, 1/2)
code concatenated with this Reed-Solomon code appears in Reference 1-4.) The
Reed-Solomon bit-error probability depends not only on the (average) Viterbi
bit-error rate, but also on the lengths of the Viterbi error bursts and the
density of the errors within the bursts. Consequently, additional simulations
are required to gather these statistics.

The Galileo Project and the International Solar Polar Mission are plan-
ning to employ a concatenated Reed-Solomon/Viterbi coding scheme for teleme-
tering science and engineering data over the space communications channel.
Even the Vovager mission has this capability on board. The reason for using a
concatenated coding scheme over convolutional coding alone is that concatenated
coding makes more efficivent use of signal power to achieve bit-error probabili-
ties in the 10-3 range.  Such low error rates are necessarv to make data com-
pression schemes workable. Data compression algorithms, while promising to
remove substantial informaticn redundancy, are verv sensitive to trans-

mission errors. In terms of cost vs benefits, a 0.8-dB (20%) improvement

1-1




from coding is comparable to the increased performance of a 64-n and 34-m
array over a 64-m antenna alone. However, the cost of implementing such a
coding scheme is not more than the cost of the electronics to array such a
pair of DSN antennas.

A block diagram of a concatenated coding system is shown in Figure 1-1,
Binary data generated on board the spacecraft are first encoded by the
Reed-Solomon encoder. This encoder also interleaves the Reed-Solomon symbols
SO as to minimize the effect of error bursts on individual Reed-Solomon code-
words. After this first level of coding, the data pass to the convolutional
encoder. The modulators convert these binary data to a phase-modulated
radio—frequency signal, which isg amplified and sent out towards the Earth.
Two modulation stages are actually performed in the transmitter. The binary
data are first multiplied by a Square-wave subcarrier, and then the resulting
waveform is used to phase modulate a high-frequency sinusoidal carrier.

On the ground, the analog signal is detected and tracked by the
receiver. A carrier reference is derived and is used to heterodyne the signal
to subcarrier frequency. The subcarrier demodulator assembly (SDA) removes
the square-wave subcarrier, and the symbol synchronizer assembly (SSA)
attempts to recover the original coded bit stream. Due to channel noise (and

other degradations caused within the receiver system), the SSA does not output

the original binary sequence. Instead, it Ooutputs a stream of quantized

estimates of these bits. The Viterbi decoder takes these estimates as inputs
and decodes the convolutional level of the coding. The Reed-Solomon decoder
then deinterleaves the symbols and does the final decoding.

For the purpose of this report, only signal degradation caused by the

Gaussian noise of the space channel is assumed. The comparisons made here

tracking and demodulation, and that the Viterbi decoder retains node synchro-
nization at all times. Studies of these degradations are being undertal.en

and the results will appear in future publications.
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SECTION II
SUMMARY

Figure 2-1 indicates the performances of several decoding schemes as a
function of bit-energy-to-noise ratio. In particular, it shows the relative
performances of several Viterbi-decoded convolutional codes including the (7,
1/2) code, which is the present standard for deep-space applications. Also
shown in Figure 2-1 are Shannon's theoretical performance limits for rate 1/2
and rate 1/3 binary codes and the performance of uncoded transmission. The
Shannon limits represent the best possible error performance for binary codes
of these rates (Reference 2-1). It is easily seen that the (7, 1/2) code is
2.3 dB away from the theoretical limit at an error probability of 5 x 10—3.
Also, the (10, 1/3) code is less than 2 dB from Shannon's limit for rate 1/3
binary codes.

Also shown in Figure 2-1 are the results of concatenating these convolu-
tional codes with an outer Reed-Solomon (255, 223) code. Ideal interleaving
i{s assumed as well as no system losses other than Gaussian channel noise. The
performance of the concatenated scheme is very sensitive to s1gnal-to-noise
ratio (SNR); a 1-dB change can result in a bit-error probabiiity jump of
several orders of magnitude. Consequently, the use of such a concatenated
scheme should be accompanied by tight control of the signal-to-noise ratic of
the communications link. Otherwise, the additional operating margin may
negate the advantages derived from coding.

In addition to these error performance curves, a mathematical model of
the burst—error statistics of Viterbi decoding is developed in this report.
The model generates errors similar tc those of Viterbi decoders by using a
simple "Monte Carlo” technique. All that is needed to apply the model are
three parameters that depend on the particular code and channel SNR. These
parameters are tabulated in this report (see Appendix C) for several different
convolutional codes and channel SNRs. The error sequences generated by this
model are shown to behave similarly to actual error sequences when both are
used tc generate Reed-Solomon performance curves. The advantage of the model

is that it may be used to generate Viterbi error sequences quickly and inex-

pensively for use in simulations when a very large amount of data is needed.
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SECTION III
SIMULATED PERFORMANCE OF SEVERAL CODING SCHEMES

The key to computing the performance of the concatenated coding system is
determining the Reed-Solomon symbol-error statistics. This information cannot
be deduced from Viterbi bit-error performance curves. Consequently, extensive
simulations were performed on the Xerox Data Systems Sigma 5 computer to cal-
culate both the Viterbi bit-error and Reed-Solomon symbol-error statistics.
Each data point was generated by processing 900,000 bits through a modifica-
tion of the software Viterbi decoder developed by J.W. Layland. The simula-
tions assumed that there were o system losses due to receiver noise or lack
of synchronization. The only degradation present in the simulation was that
of the random number génerator simulating additive white Gaussian noise to
reflect the channel SNR. Also, sufficient Reed-Solomon symbol interleaving
was assumed so that the symbol-error events were independent. This is
referred to as ideal interleaving. It is worth noting that interleaving to a
der »" 5 1s nearly ideal for the DSN (7, 1/2) inner convolutional code at
SNk: - ove 2.0 dB.

Figure 3-1 shows the results of these simulations. 1In addition to the

plots of Viterbi bit-error probability, p, as a function of channel SNR,

(Eb/NO), each part of Figure 3 displays the Reed-Solomon symbol-error

probability, #. The Reed-Solomon bit and word-error probabilities are calcu-~-
lated from 7 and other burst statistic information derived from these simula-
tions. These calculations and the theory behind them are described in detail
in Appendix A. The Reed-Solomon performance curves are plotted against a
concatenated channel SNR, which is 0.58 dB greater than that of the Viterbi

channel due to the overhead of the Reed-Solomon parity symbols.

MU B i ok s g




VITERBI DECODER REED-SOLOMON
BIT ERROR SYMBOL ERROR
PROBABILITY PROBABILITY ()
(SIMULATED)

CONCATENATED
REED-SOLOMON
DECODER BiT ERROR
PROBABILITY (COMPUTED)

PROBABILITY OF ERROR

CONCATENATED
REED-SOLOMON
WORD ERROR
PRCSBABILITY
(COMPUTED)

i It
2,0 2.5
€y No d8

Figure 3-1. Performance Statistics for Ideally Interleaved Concatenated Coding
Scheme (Assuming No System Losses): (a) 3233013 (7, 1/2) Convolu-
t ional Code and (235, 223) Reed-Solomon Zode; (b) 7376147 (7, 1/3)
Convolutional Code and (255, 223) Reed-tolomon Code; (c) 3103320323
(10, 1/2) Convoluticnal Code and (255, 223) Reed-Solomon Code:
(d) 7461776427 (10, 1/3) Convolution Code and (255, 223) Reed-
Solomon Code
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SECTION IV
A GEOMETRIC MODEL OF VITERBI BURST-ERROR STATISTICS

The software simulations described in Section III produced a large amount
of Viterbi decoder burst—-error statistics, which were then studied. It was
found that Viterbi decoder error bursts, as well as waiting times between
bursts, were very nearly geometrically distributed.

Three parameters are needed to define these distributions. They are the
average burst length, B, the average waiting time, W, and the average density
of errors in a burst, 6. Given these parameters, Viterbi decoder burst

lengths, B, were observed to be distributed according to

pr(B = m) = p(1 - p™ L (@ >0)

p=1/B.

Errors within bursts occur randomly with probability 6. Waiting times, W} were

observed to be distributed according to

praW =n) = q(1- " ¥ (mx k-1

where K is the constraint length of the code and
qQq=1/(W-K+ 2).
Derivations of these formulae may be found in Appendix B.

A Monte Carlo software routine was written to generate Viterbi error

sequences directly from these formulae. The advantage of doing this is that

the Viterbi software decoder requires about 21(-7 hours per million bits of

computer time (XDS Sigma-5 computer), while the geometric model requires an

average of five minutes per billion bits.




To validate the geometric model, Reed-Solomon word- and bit-error rates
were calculated using both the Viterbi software decoder and the geometric model
routine. No interleaving was used so that the effects of the error bursts
appeared to the maximum extent possible. These results were compared and
are shown for various codes in Figure 4-1. (Some of the curves exhibited in
this figure run off the edge of the page since the next data point was too
low to be plotted on the same scale.) It is easily seen that the geometric

model closely approximates the actual data in all cases.
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Figure 4-1.
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SECTION V
CONCLUSION AND DISCUSSION

The software mod21 of the Viterbi decoder used in this study can be
enhanced by the inclusion of some of the system losses that arise in actual
hardware devices. By adding these degradations to the model, their effects
can be studied and possible remedies can be incorporated into future system
designs.

The Viterbi decoders currently used by the DSN suffer loss of node
synchronization at low SNRs. This means that if the signal is too weak, the
decoder cannot decide which of the two code symbols associated with each data
bit should be first. The concatenated coding system described in this report
allows transmission of data at SNRs lower than those required for a convolu-
tional-only scheme. This means that node synchronization losses will be
higher in the concatenated scheme.

Synchronization problems are also associated with the Reed-Solomon code.
A method for determining Reed-Solomon symbol and word boundaries is needed.

If a packet telemetry system such as the one proposed by the End-to~-End Infor-
mation System (EEIS) (Reference 5-1) is to be implemented, then a frame
synchronization device is also required.

For this report, only the error correcting capability of the Reed-Solomon
code was considered. However, this code is also capable of correcting a

number of erasures, i.e., Reed-Solomon symbols that are suspected to be in

error. The (255, 223) code can correct E errors and e erasures in each code-

word as long as 2E + e < 33. If erasures can be detected, then the perform-
ance of the concatenated codes may improve by as much as 0.3 dB.

It should be noted that the loss of node synchronization and subsequent
recovery by the Viterbl decode: may cause a deletion or imsertion of a bit
into the data stream entering the Reed-Solomon decoder. When this occurs,
Reed-Solomon symbol and word synch will be lost. In the proposed EEIS packet
telemetry scheme, a node synch failure could result in a loss of over 8000
information bits. Consequently, the sensitivity of the concatenated coding
to node synchronization losses is potentially greater than that of convolu-~

tional coding alone.




The effects of carrier, subcarrier, symbol, and bit tracking in the sys-
tem are also important to the overall performance of the coded channel since
poor carrier tracking increases the number of Viterbi decoder bit errors.

The strict error-rate requirements of data compression are a major reason
for investigating concatenated coding schemes. These requirements stem from
the removal of redundant information, hence compression. As an example, one
data compression scheme (Reference 5-2), reduces the number of bits per
picture by over one half without loss of information. The reconstructed
compressed data, however, are more sensitive to transmission errors than the
original data. Hence, error correcting codes must be used. Notice that the
concatenated schemes described in this report more than double the number of
bits that are transmitted per information bit. This seems to neutralize the
useful effects of data compression. Actually, this is not the case since an

SNR of 9.5 dB would be required if no coding were employed to achieve an error

rate of 10--5 (see Figure 2-1), whereas the concatenated scheme with the (7,

1/2) inner code requires ouly 2.3 dB, and only 1.6 dB is required when the
(10, 1/3) inner code is used. It might be beneficiil to consolidate cata

compression and channel coding into a one-step process.




APPENDIX A
EXPLANATION OF SIMULATIONS AND CALCULATIONS

It is well known that the bit errors produced by Viterbi decoding in the
presence of noise are not independent. Instead, they tend to group together
in error clumps known as "bursts.” This happens because error evants in a
Viterbi decoder are caused by excursions from the correct path in the code
trellis structure (Reference 1-1). The calculation required to generate the
performance curves of Section III required a careful tabulation of these error
bursts for the various convolutional codes under consideration. The theory

behind these calculations is outlined in this section.

A. THE DEFINITION OF "BURST"
Denote the constraint length of the convolutional code under considera-~

tion by K. Consider a sequence of bits output by the Viterbi decoder of the

form

K-1 B K-~-1

— —

CCC--C € XXX---X € CCC-+-C

where the letter c represents a correctly decoded bit, an e represents a bit
error, and an x may be either correct or in error. Suppose also thait there is
no string of K -~ 1 consecutive c's in the sequence xxx.--x. Then the string
exxx.--xe 1s called a "burst” of length B. The motivation behind this defini-
tion of a burst is that a string of K - 1 consecutive correct bits will return
the Viterbi decoder to the correct decoding path. A string of c's between two

bursts will be referred to as a "waiting time.’

B. THE CALCULATION OF p and -

The calculation of the Viterbi bit-error rate, p, by the Viterbi software
decoder amounts to simply counting the number of bit errors made and dividing
by the total number of bits examined. The calculation of the Reed-Solomon

input symbol error probability, =, is more involved and is described below.




The Reed-Solomon code considered in this report has code words consisting
of 255 eight-bit Reed-Solomon symbols. The quantity = {isg therefore the
probability that a set of eight consecutive Viterbi-decoded bits contains at

least one error. If Viterbi bit errors were independent, one would expect

T=1- (1 - p)8. However, Viterbi bit errors are certainly not independent

and, in fact, this estimate for 7 is more than double the correct value for
small p.

One way to obtain a good estimate for 7 is to partition the output bit
stream of the Viterbi decoder into disjoint sets of eight consecutive bits and
observe how many of these sets contain bit errors. However, since no a priori
knowledge of symbol synchronization is assumed in these simulations, it is
better to average over all sets of eight consecutive bits. This amounts to
sliding a window of size eight over the output of the Viterbi decoder. The
actual algorithm used in the simulations is as follows.

Suppose n bits are decoded by the Viterbi decoder. Then the number of
symbol errors should be nn/8. On the other hand, a burst of length B will
corrupt, on the average, (B + 7)/8 symbols. Since waiting times are of length
at least K - 1, and K > 7 for this report, it is extremely rare for two
bursts to corrupt the same symbol. If there were N bursts of length
Bi (1 £ 1 < N), then

B1 + 7
number of symbol errors = )

(B+7)

where B is the average burst length. It follows that

W.M- (A-l)

n

[f 9 is defined as the average density of errors in a burst, then Equation

(A-1) may be rewritten in the form




T -ﬁ-’-
n

|

The quantities n, N, p, and 0 are easily tabulated by the software Viterbi

decoder.

C.  ESTIMATION OF UNCERTAINTY IN THE CALCULATIONS

Since only a finite number of bits may be examined in any simulation, it
is advantageous to have a measure of how well the estimates of p and 7
described above reflect their actual values. Again let N be the number of
bursts observed. Let Xi be the number of bit errors in the ith burst
(1 £ 1< N). Assume that the Xi's are independent and identically dis-
tributed (i.i.d.) with first and second moments E(X) and E(Xz) respec-—
tively. Assume also that N is Poisson distributed with mean A and that N is

independent of each Xi. The the number of bit errors observed is

In Reference A-1 it is shown that

E(SN) = E(N)E(X)

and

Var(SN) = E(N)Var(X) + (E(X))ZVar(N).

Since N is Poisson, E(N) = Var(N) = A\. Let f = o(s )/E(S ) be the
fractional uncertainty in the measurement of S Then the quantities E(X),
E(X ), and X are estimated by the software Viterbi decoder to give an
estimate of f.

To estimate the uncertainty in the calculation of T, let Bi be the
length of the 1t burst and let TN be the number of symbol errors

occurring in N bursts. From Equation (A-1) it follows that




7 + E(B)

E(Ty) = A ()

A 2
Vat(TN) = 5L (49 + 14E(B) + E(B")).

If 7= 0 (TN)/E(TN) is the fractional uncertainty in the calculation of

n, then

Y 1 J[49 + 14E(B) + E(BY)

"7 ¥ E(B) X
As before, E(B) and E(Bz) are easily tabulated by the software Viterbi decoder.
Figure A-1 shows plots of p and m (the same as those in Figure 3-1)

with error bars representing the uncertainty in their calculation included.

D. REED~SOLOMON WORD ERROR PROBABILITY, Puord

To calculate the Reed-Solomon word-error probability, sufficient symbol
interleaving is assumed so that the symbol errors may be considered to be
independent. Since a word error occurs exactly when there are 17 or more

symbol errors in a 255-symbol word,

255

. 255, 3 o4 _ g5 12553
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Figure A-1. Performance Statistics of Viterbi Decoder (Assuming No System
Losses): (a) 3233013 (7, 1/2) Convolutional Code; (b) 7376147
(7, 1/3) Convolutional Code; (c) 3103320323 (10, 1/2) Convolu-
tional Code; (d) 7461776427 (10, 1/3) Convolutional Code
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rigure A-1 (contd)
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E. REED-SOLOMCN BIT-ERROR PROBABILITY, Phit

Let B and 6 be the average burst length and the average density of
errors in a burst, respectively, for the convolutional inner code in
question. If a Reed-~Sclomon word error occurs, then between 17 and 255
symbols are in error. Recall that the average number of symbols corrupted by
a burst is (B + 7)/8. Hence the bit-error probability in a corrupted symbol
is 0B/(B + 7). If follows that

255
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APPENDIX B
DERIVATION OF THE GEOMETRIC MODEL OF BURST STATISTICS

A random variable X 1s said to be geometrically distributed with
parameter pe[0, 1] if

Pr(X = s) = p(1-p)°® (s = 0,1, 2, ...,

For the purposes of this section, a random variable Y satisfies a "modified
geometric distribution” of parameter P€[0, 1] if there exists a positive
integer d such that

Pr(Y =8) = p(1 - p)*? (s md,d+1,d+2,

In this case, Y will be called d-geometrically distributed.

In Reference B-~1, J. Omura showed by a random coding argument that burst
lengths for an "average convolutional code” have a distribution that may be
overbounded by a l-geometric distribution. 1In this report, it will be shown,
in fact, that for convolutional codes of constraint lengths seven through ten,
burst lengths are very nearly l-geometrically distributed. Moreover, the
waiting times are K - 1 geometrically distributed.

The tests that were used to exhibit these facts were essentially the same
for burst lengths and waiting times. For this reason, only the test for burst
lengths will be described below.

Suppose that a Viterbi decoder simulation i1s performed and N bursts are

observed. Let Bi be the length of the ith burst (1 = 1, 2, 3, -++ 5 N).

Let B be the random variable representing burst length (so Bi is the 1th
sample of the random variable B). It must be shown that

Pr(B; =) = p(1 - p)5°1 (s =1, 2,3, .. (B~1)

for some pe(0, 1]. The fact that these probabilities must sum to one forces
p = 1/8.
For eachm = 1, 2, 3, ..., 1let Nm be the number of bursts of length

greater than or equal to m. If the burst lengths were indeed l-geometrically

distributed with parameter 1/B, then the expected value of Nm/Nn would be

B-1




0

s-1 = s-1
B/8) =( D et - p) PIRICERS

sS=m s=n

=1 - p)m-n =@ __%_)m-n.
In other words, for N sufficiently large,
- /(m-
1-1/B= (Nm/Nn)l (m=n) (B-2)

which is a constant.

Since N is only moderately large in the simulations described in Section
IIT (on the order of 200 to 500), the performance of this test can be improved
by grouping bursts of several consecutive lengths into bins. Enough bursts
were placed into each bin so that 1 - 1/B could be approximated to within 0.05
with 90% accuracy for each bin. These approximations remained reasonably
constant between bins, indicating a successful test.

As remarked in Section IV, waiting times were found, by a similar test,
to be K -~ 1 geometrically distributed with parameter q=1/(W - K+ 1), where W
is the average waiting time and K is the constraint length of the code.

The geometric model of Viterbi burst-error statistics states that these
bursts occur randomly according to these two modified geometric distribu-
tions. Errors within a burst occur essentially randomly (except for the fact
that each burst starts and ends with an error) with probability 6. To gener-
ate error sequences similar to those produced by a Viterbi decoder, only the
quantities B, W, and 6 must be kncim. These are tabulated for several codes

and channel SNRs in Appendix C.
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APPENDIX C
TABLES OF VITERBI DECODER BURST STATISTICS

The following tables give values of some important parameters describing
the burst statistics of Viterbi decoding. These are the average burst length

B, the average waiting time, W, and the average density of errors in a burst,

6 . The tables show the values of these parameters for the DSN (7, 1/2) con-
volutional code as well as for (7, 1/3), (10, 1/2), and (10, 1/3) codes. A
range of channel SNRs that is of interest in deep-space applications is

considered.
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